Doubly-efficient zkSNARKs without trusted setup

Riad S. Wahby*, Ioanna Tzialla○, abhi shelat†, Justin Thaler‡, and Michael Walfish○

*Stanford University
○New York University
†Northeastern University
‡Georgetown University

May 23rd, 2018
zkSNARK

Argument A “proof”...
zkSNARK

Argument A “proof”…

of knowledge . . . that you know a secret, and . . .
zkSNARK

Argument A “proof”...

of knowledge ... that you know a secret, and...

Zero knowledge ... it doesn’t reveal the secret.
Argument A “proof”...
of knowledge ... that you know a secret, and...
Zero knowledge ... it doesn’t reveal the secret.
Succinct It’s short...
zkSNARK

Argument A “proof”...

of knowledge ... that you know a secret, and...

Zero knowledge ... it doesn’t reveal the secret.

Succinct It’s short...

Non-interactive ... and it can be written down...
zkSNARK

Argument A “proof”...

of knowledge ... that you know a secret, and...

Zero knowledge ... it doesn’t reveal the secret.

Succinct It’s short...

Non-interactive ... and it can be written down...

(Publicly verifiable) ... so that anyone can check it.
zkSNARKs: Costs and desiderata

Proof size
zkSNARKs: Costs and desiderata

- Proof size
- Prover (P) time
- Verifier (V) time
- Cryptographic assumptions
- Trusted setup?
zkSNARKs: Costs and desiderata

Proof size

Prover (\(\mathcal{P}\)) time

Verifier (\(\mathcal{V}\)) time
zkSNARKs: Costs and desiderata

- Proof size
- Prover (\mathcal{P}) time
- Verifier (\mathcal{V}) time
- Cryptographic assumptions
zkSNARKs: Costs and desiderata

Proof size

Prover (P) time

Verifier (V) time

Cryptographic assumptions

Trusted setup?
Our contributions

- We design and implement *Hyrax*, a zkSNARK for “parallel” arithmetic circuit satisfiability:

 For V’s input x, $\exists w : C(x, w) = 1$ (and P knows w)

- Proof size is sub-linear in $|C|$ and $|w|
- Prover time is linear in $|C|
- Verifier time is sublinear in $|C|$ and $|w|
- Good constants: concrete costs are low
- Cryptographic assumptions: discrete log
- No trusted setup

Hyrax is one useful point in a large tradeoff space.
Our contributions

→ We design and implement Hyrax, a zkSNARK for “parallel” arithmetic circuit satisfiability:
for \mathcal{V}’s input x, $\exists w : C(x, w) = 1$ (and \mathcal{P} knows w)

- Proof size is sub-linear in $|C|$ and $|w|$
- Prover time is linear in $|C|$
- Verifier time is sublinear in $|C|$ and $|w|$
Our contributions

- We design and implement *Hyrax*, a zkSNARK for “parallel” arithmetic circuit satisfiability:
 for V’s input x, $\exists w : C(x, w) = 1$ (and P knows w)

 Proof size is sub-linear in $|C|$ and $|w|$

 Prover time is linear in $|C|$

 Verifier time is sublinear in $|C|$ and $|w|$

 Good constants: concrete costs are low
Our contributions

We design and implement *Hyrax*, a zkSNARK for “parallel” arithmetic circuit satisfiability:

for \(\forall \)’s input \(x \), \(\exists w : C(x, w) = 1 \) (and \(P \) knows \(w \))

Proof size is sub-linear in \(|C| \) and \(|w| \)

Prover time is linear in \(|C| \)

Verifier time is sublinear in \(|C| \) and \(|w| \)

Good constants: concrete costs are low

Cryptographic assumptions: discrete log

No trusted setup
Our contributions

→ We design and implement Hyrax, a zkSNARK for “parallel” arithmetic circuit satisfiability: for V’s input x, $\exists w : C(x, w) = 1$ (and P knows w)

→ We evaluate Hyrax and five other ZK systems. We find that:

Our contributions

→ We design and implement **Hyrax**, a zkSNARK for “parallel” arithmetic circuit satisfiability: for ∀’s input x, $\exists w : C(x, w) = 1$ (and P knows w)

→ We evaluate Hyrax and five other ZK systems.

We find that:

- Hyrax’s proofs are **small**: to get smaller, you have to pay more computation.
Our contributions

→ We design and implement Hyrax, a zkSNARK for “parallel” arithmetic circuit satisfiability:
for \(\forall \)'s input \(x \), \(\exists w : C(x, w) = 1 \) (and \(\mathcal{P} \) knows \(w \))

→ We evaluate Hyrax and five other ZK systems.

We find that:

Hyrax’s proofs are small:
to get smaller, you have to pay more computation.
Hyrax is fast:
to get faster, you have to accept bigger proofs.
Our contributions

- We design and implement Hyrax, a zkSNARK for “parallel” arithmetic circuit satisfiability: for \(\forall \)’s input \(x \), \(\exists w : C(x, w) = 1 \) (and \(P \) knows \(w \))

- We evaluate Hyrax and five other ZK systems.

We find that:

- Hyrax’s proofs are small: to get smaller, you have to pay more computation.
- Hyrax is fast: to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space
Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level

3. Evaluation
General-purpose ZK proof systems for NP

On input x, P convinces V that $\Phi(x, w) = 1$
(for a witness w that P knows)
General-purpose ZK proof systems for NP

On input x, P convinces V that $\Phi(x, w) = 1$ (for a witness w that P knows)

Diagram

Front-end

- Φ: witness checking computation
- arithmetic circuit C

Back-end

- ZK proof machinery
- V computation
- P computation
General-purpose ZK proof systems for NP

On input x, P convinces V that $\Phi(x, w) = 1$
(for a witness w that P knows)
General-purpose ZK proof systems for NP

On input x, P convinces V that $\Phi(x, w) = 1$ (for a witness w that P knows)
General-purpose ZK proof systems for NP

On input x, \mathcal{P} convinces \mathcal{V} that $\Phi(x, w) = 1$ (for a witness w that \mathcal{P} knows)
General-purpose ZK proof systems for NP

On input x, P convinces V that $\Phi(x, w) = 1$ (for a witness w that P knows)
Existing systems use a wide range of proof machinery

Linear PCPs [IKO07, Gro09, Gro10, BG12, Lip12, BCIOP13, GGPR13, ...]
- Pinocchio [PGHR13], libsnark [BCTV14]

Short Proofs

<table>
<thead>
<tr>
<th>libsnark</th>
<th>Short Proofs</th>
<th>Fast P</th>
<th>Fast V</th>
<th>Trusted setup?</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>Knowledge of exponent</td>
</tr>
</tbody>
</table>
Existing systems use a wide range of proof machinery

Linear PCPs [IKO07, Gro09, Gro10, BG12, Lip12, BCIOP13, GGPR13, ...]
- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

Short Proofs

<table>
<thead>
<tr>
<th></th>
<th>Short Proofs</th>
<th>Fast P</th>
<th>Fast V</th>
<th>Trusted setup?</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>libsnark</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>Knowledge of exponent</td>
</tr>
<tr>
<td>Bulletproofs</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>discrete log</td>
</tr>
</tbody>
</table>
Existing systems use a wide range of proof machinery

Linear PCPs [IKO07, Gro09, Gro10, BG12, Lip12, BCIOP13, GGPR13, ...]
- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation–in-the-head [IKOS07]
- ZKBoo [GMO16], ZKB++ [CDGORRSZ17]

<table>
<thead>
<tr>
<th></th>
<th>Short Proofs</th>
<th>Fast (\mathcal{P})</th>
<th>Fast (\mathcal{V})</th>
<th>Trusted setup?</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>libsnark</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>Knowledge of exponent</td>
</tr>
<tr>
<td>Bulletproofs</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>discrete log</td>
</tr>
<tr>
<td>ZKB++</td>
<td>×</td>
<td>✓</td>
<td>×(ish)</td>
<td>✓</td>
<td>collision-resistant hashes</td>
</tr>
</tbody>
</table>
Existing systems use a wide range of proof machinery

Linear PCPs \([\text{IKO07, Gro09, Gro10, BG12, Lip12, BCIOP13, GGPR13, \ldots}]\)

- Pinocchio \([\text{PGHR13}]\), libsnark \([\text{BCTV14}]\)
- \([\text{BCCGP16}]\), Bulletproofs \([\text{BBBPWM18}]\)

Multiparty computation–in-the-head \([\text{IKOS07}]\)

- ZKBoo \([\text{GMO16}]\), ZKB++ \([\text{CDGORRSZ17}]\)
- Ligero \([\text{AHIV17}]\)

<table>
<thead>
<tr>
<th></th>
<th>Short Proofs</th>
<th>Fast (P)</th>
<th>Fast (V)</th>
<th>Trusted setup?</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>libsnark</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>Knowledge of exponent</td>
</tr>
<tr>
<td>Bulletproofs</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>discrete log</td>
</tr>
<tr>
<td>ZKB++</td>
<td>✗</td>
<td>✓</td>
<td>✗ (ish)</td>
<td>✓</td>
<td>collision-resistant hashes</td>
</tr>
<tr>
<td>Ligero</td>
<td>✓ (ish)</td>
<td>✓</td>
<td>✓ (ish)</td>
<td>✓</td>
<td>collision-resistant hashes</td>
</tr>
</tbody>
</table>
Existing systems use a wide range of proof machinery

Linear PCPs [IKO07, Gro09, Gro10, BG12, Lip12, BCIOP13, GGPR13, ...]
- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation—in-the-head [IKOS07]
- ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
- Ligero [AHIV17]

Short PCPs [Kil94, Mic00, BS08, BCN16, RRR16, BBC+17, BBHR17, ...]
- libSTARK [BBHR18]

<table>
<thead>
<tr>
<th></th>
<th>Short Proofs</th>
<th>Fast P</th>
<th>Fast V</th>
<th>Trusted setup?</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>libsnark</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>Knowledge of exponent</td>
</tr>
<tr>
<td>Bulletproofs</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>discrete log</td>
</tr>
<tr>
<td>ZKB++</td>
<td>✗</td>
<td>✓</td>
<td>✗ (ish)</td>
<td>✓</td>
<td>collision-resistant hashes</td>
</tr>
<tr>
<td>Ligero</td>
<td>✓ (ish)</td>
<td>✓</td>
<td>✓ (ish)</td>
<td>✓</td>
<td>collision-resistant hashes</td>
</tr>
<tr>
<td>libSTARK</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>Reed-Solomon conjecture</td>
</tr>
</tbody>
</table>
Roadmap

1. General-purpose ZK proof systems
2. Hyrax at a high level
3. Evaluation
Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT

[Bab85, GMR89, GKR08, CMT12, Tha13, WJBsTWW17, ZGKPP17, ...]
Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,…]

We compile Hyrax’s IP to a ZK argument using the techniques of [BGGHKMR88] and [CD98]…
Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT [Bab85, GMR89, GKR08, CMT12, Tha13, WJBsTWW17, ZGKPP17, ...]

We compile Hyrax’s IP to a ZK argument using the techniques of [BGGHKMR88] and [CD98]...

... plus refinements that result in multiple orders of magnitude savings in V time and proof size.
Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT [Bab85, GMR89, GKR08, CMT12, Tha13, WJBsTWW17, ZGKPP17, …]

We compile Hyrax’s IP to a ZK argument using the techniques of [BGGHKMR88] and [CD98]…

…plus refinements that result in multiple orders of magnitude savings in \mathcal{V} time and proof size.

High-level idea: Replace each of \mathcal{P}’s messages in the IP with a commitment to the message; \mathcal{V} runs checks “under the commitments.”
Cryptographic commitments

Sender computes $C \leftarrow \text{Com}(m)$, sends to *receiver*. Later, sender can *open* C, convincing the receiver that m was the committed message.

In general, $\text{Com}(m)$ has two important properties:

- **Hiding:** C reveals nothing about m.
- **Binding:** Cannot produce $m' \neq m$ such that $C = \text{Com}(m')$.

We also require a linear homomorphism, \circ: given $C_0 \leftarrow \text{Com}(m_0), C_1 \leftarrow \text{Com}(m_1)$, we have

$$C_0 \circ C_1 \equiv \text{Com}(m_0 + m_1)$$

$$C_{k1} \equiv C_1 \circ \cdots \circ C_1 = \text{Com}(k \cdot m_1)$$

The Pedersen commitment has this property.
Cryptographic commitments

Sender computes $C \leftarrow \text{Com}(m)$, sends to receiver. Later, sender can open C, convincing the receiver that m was the committed message.

In general, $\text{Com}(m)$ has two important properties:

Hiding: C reveals nothing about m.

Binding: Cannot produce $m' \neq m$ s.t. $C = \text{Com}(m')$
Cryptographic commitments (with a linear homomorphism)

Sender computes $C \leftarrow \text{Com}(m)$, sends to receiver. Later, sender can open C, convincing the receiver that m was the committed message.

In general, $\text{Com}(m)$ has two important properties:

Hiding: C reveals nothing about m.

Binding: Cannot produce $m' \neq m$ s.t. $C = \text{Com}(m')$

We also require a linear homomorphism, \odot:

given $C_0 \leftarrow \text{Com}(m_0)$, $C_1 \leftarrow \text{Com}(m_1)$, we have

$$C_0 \odot C_1 \triangleq \text{Com}(m_0 + m_1)$$

$$C_1^k \triangleq C_1 \odot \cdots \odot C_1 = \text{Com}(k \cdot m_1)$$

The Pedersen commitment has this property.
Witness checker must be expressed as a \textit{layered} AC.
GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs
2. P evaluates, returns output y
3. V constructs polynomial relating y to last layer's input wires
4. V engages P in a sum-check, gets claim about second-last layer
5. V iterates, gets claim about inputs, which it can check

V thinking...
y thinking...
... sum-check

[LFKN90] more sum-checks
GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates

V sends inputs
2. P evaluates
GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs
2. P evaluates
3. V constructs polynomial relating y to last layer's input wires
4. V engages P in a sum-check, gets claim about second-last layer
5. V iterates, gets claim about inputs, which it can check

thinking...

Vx

P

thinking...

... sum-check

$[LFKN90]$

more sum-checks
GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \(\mathcal{V} \) sends inputs

2. \(\mathcal{P} \) evaluates
1. V sends inputs
2. P evaluates, returns output y
3. V constructs a polynomial relating y to the last layer's input wires
4. V engages P in a sum-check, gets a claim about the second-last layer
5. V iterates, gets a claim about the inputs, which it can check
1. \(V \) sends inputs
2. \(P \) evaluates, returns output \(y \)
3. \(V \) constructs polynomial relating \(y \) to last layer’s input wires

GKR08: IP for arithmetic circuit evaluation (non-ZK)

thinking...

\[\text{[LFKN90]} \]

more sum-checks
GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs
2. P evaluates, returns output y
3. V constructs polynomial relating y to last layer’s input wires
4. V engages P in a sum-check

[Diagram of arithmetic circuit evaluation and sum-check process]
GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. \(\mathcal{V} \) sends inputs
2. \(\mathcal{P} \) evaluates, returns output \(y \)
3. \(\mathcal{V} \) constructs polynomial relating \(y \) to last layer's input wires
4. \(\mathcal{V} \) engages \(\mathcal{P} \) in a sum-check, gets claim about second-last layer

\[\text{[LFKN90]} \]

More sum-checks
1. V sends inputs
2. P evaluates, returns output y
3. V constructs polynomial relating y to last layer's input wires
4. V engages P in a sum-check, gets claim about second-last layer
5. V iterates
1. V sends inputs
2. P evaluates, returns output y
3. V constructs polynomial relating y to last layer's input wires
4. V engages P in a sum-check, gets claim about second-last layer
5. V iterates
GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs
2. P evaluates, returns output y
3. V constructs polynomial relating y to last layer's input wires
4. V engages P in a sum-check, gets claim about second-last layer
5. V iterates
1. V sends inputs
2. P evaluates, returns output y
3. V constructs polynomial relating y to last layer's input wires
4. V engages P in a sum-check, gets claim about second-last layer
5. V iterates, gets claim about inputs, which it can check
1. \(\mathcal{V} \) sends inputs
2. \(\mathcal{P} \) evaluates, returns output \(y \)
3. \(\mathcal{V} \) constructs polynomial relating \(y \) to last layer's input wires
4. \(\mathcal{V} \) engages \(\mathcal{P} \) in a sum-check, gets claim about second-last layer
5. \(\mathcal{V} \) iterates, gets claim about inputs, which it can check

To make this protocol ZK, \(\mathcal{P} \) sends commitments to its messages [CD98].
GKR08: IP for arithmetic circuit evaluation (with ZK)

1. \mathcal{V} sends inputs
2. \mathcal{P} evaluates, returns output y
3. \mathcal{V} constructs polynomial relating y to last layer’s input wires
4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
5. \mathcal{V} iterates, gets claim about inputs, which it can check

In a ZK proof, AC inputs include w, so \mathcal{V} cannot check them directly!
Idea: use a polynomial commitment [KZG10]

V’s final check is to evaluate a polynomial \tilde{m} that encodes input x and witness w.
Idea: use a *polynomial commitment* [KZG10]

\(\mathcal{V} \)'s final check is to evaluate a polynomial \(\tilde{m} \) that encodes input \(x \) and witness \(w \).

Instead of having \(\mathcal{V} \) evaluate \(\tilde{m} \) directly:

1. \(\mathcal{P} \) commits to \(\tilde{m} \) at the start of the protocol

Idea: use a *polynomial commitment* [KZG10]

\(\mathcal{V} \)’s final check is to evaluate a polynomial \(\tilde{m} \) that encodes input \(x \) and witness \(w \).

Instead of having \(\mathcal{V} \) evaluate \(\tilde{m} \) directly:

1. \(\mathcal{P} \) commits to \(\tilde{m} \) at the start of the protocol
2. \(\mathcal{P} \) and \(\mathcal{V} \) run the interactive proof
Idea: use a polynomial commitment [KZG10]

\(\mathcal{V} \)'s final check is to evaluate a polynomial \(\tilde{m} \) that encodes input \(x \) and witness \(w \).

Instead of having \(\mathcal{V} \) evaluate \(\tilde{m} \) directly:

1. \(\mathcal{P} \) commits to \(\tilde{m} \) at the start of the protocol
2. \(\mathcal{P} \) and \(\mathcal{V} \) run the interactive proof
3. \(\mathcal{P} \) evaluates \(\tilde{m}(\cdot) \) at a point of \(\mathcal{V} \)'s choosing...
Idea: use a polynomial commitment [KZG10]

V’s final check is to evaluate a polynomial \tilde{m} that encodes input x and witness w.

Instead of having V evaluate \tilde{m} directly:
1. P commits to \tilde{m} at the start of the protocol
2. P and V run the interactive proof
3. P evaluates $\tilde{m}(\cdot)$ at a point of V’s choosing...
4. ...and proves consistency with initial commitment.
Idea: use a polynomial commitment \cite{KZG10}

\(\mathcal{V}\)'s final check is to evaluate a polynomial \(\tilde{m}\) that encodes input \(x\) and witness \(w\).

Instead of having \(\mathcal{V}\) evaluate \(\tilde{m}\) directly:

1. \(P\) commits to \(\tilde{m}\) at the start of the protocol
2. \(P\) and \(\mathcal{V}\) run the interactive proof
3. \(P\) evaluates \(\tilde{m}(\cdot)\) at a point of \(\mathcal{V}\)'s choosing...
4. \(\ldots\) and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme tailored to \textit{multilinear}* polynomials like \(\tilde{m}\).

*multivariate, linear in each variable
A polynomial commitment for \(\tilde{m} \)

\[
\tilde{m}(r) \triangleq L \cdot T \cdot R^T
\]

\(\mathcal{V} \) can compute \(L \) and \(R \) from \(r \), and

\[
T \triangleq \begin{bmatrix}
 w_0 & w_\ell & \cdots & w_{\ell^2-\ell} \\
 w_1 & w_{\ell+1} & \cdots & w_{\ell^2-\ell+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^2-1}
\end{bmatrix}
\]
A polynomial commitment for \tilde{m}

$$\tilde{m}(r) \triangleq L \cdot T \cdot R^T$$

\mathcal{V} can compute L and R from r, and T is:

$$T \triangleq \begin{bmatrix}
 w_0 & w_\ell & \cdots & w_{\ell^2-\ell} \\
 w_1 & w_{\ell+1} & \cdots & w_{\ell^2-\ell+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^2-1}
\end{bmatrix}$$

Naive: \mathcal{P} sends commitments to each w_i
A polynomial commitment for \tilde{m}

$$\tilde{m}(r) \triangleq L \cdot T \cdot R^T$$

\mathcal{V} can compute L and R from r, and

$$T \triangleq \begin{bmatrix}
w_0 & w_\ell & \cdots & w_{\ell^2-\ell} \\
w_1 & w_{\ell+1} & \cdots & w_{\ell^2-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^2-1}
\end{bmatrix}$$

Naive: \mathcal{P} sends commitments to each w_i

x Proof size and \mathcal{V} time are both $O(|w|)!$
A polynomial commitment for \(\tilde{m} \)

\[
\tilde{m}(r) \triangleq L \cdot T \cdot R^T
\]

\(\mathcal{V} \) can compute \(L \) and \(R \) from \(r \), and

\[
T \triangleq \begin{bmatrix}
w_0 & w_{\ell} & \cdots & w_{\ell^2-\ell} \\
w_1 & w_{\ell+1} & \cdots & w_{\ell^2-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^2-1}
\end{bmatrix}
\]

Better: \(\mathcal{P} \) sends a *multi-commitment* to each row:

\[
T_0 = \text{Com}(w_0, w_{\ell}, \ldots, w_{\ell^2-\ell}) \quad [\text{Gro09}]
\]
A polynomial commitment for \tilde{m}

$$\tilde{m}(r) \triangleq L \cdot T \cdot R^T$$

\mathcal{V} can compute L and R from r, and

$$T \triangleq \begin{bmatrix}
w_0 & w_\ell & \cdots & w_{\ell^2-\ell} \\
w_1 & w_{\ell+1} & \cdots & w_{\ell^2-\ell+1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^2-1}
\end{bmatrix}$$

Better: \mathcal{P} sends a multi-commitment to each row:

$$T_0 = \text{Com}(w_0, w_\ell, \ldots, w_{\ell^2-\ell}) \quad [\text{Gro09}]$$

Pedersen commitments: vector-wise homomorphism.
A polynomial commitment for \tilde{m} (cont’d)

$\tilde{m}(r) \triangleq L \cdot T \cdot R^T$

$T \triangleq \begin{bmatrix}
 w_0 & w_\ell & \cdots & w_{\ell^2 - \ell} \\
 w_1 & w_{\ell+1} & \cdots & w_{\ell^2 - \ell + 1} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{\ell - 1} & w_{2 \cdot \ell - 1} & \cdots & w_{\ell^2 - 1}
\end{bmatrix}$

1. V uses homomorphism to compute $\text{Com}(L \cdot T)$.
A polynomial commitment for \tilde{m} (cont’d)

$$\tilde{m}(r) \triangleq L \cdot T \cdot R^T$$

$$T \triangleq \begin{bmatrix}
 w_0 & w_\ell & \cdots & w_{\ell^2-\ell} \\
 w_1 & w_{\ell+1} & \cdots & w_{\ell^2-\ell+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^2-1}
\end{bmatrix}$$

1. V uses homomorphism to compute $\text{Com}(L \cdot T)$.
2. P sends a commitment to an evaluation of $\tilde{m}(r)$
A polynomial commitment for \tilde{m} (cont’d)

$$\tilde{m}(r) \triangleq L \cdot T \cdot R^T$$

$$T \triangleq \begin{bmatrix}
 w_0 & w_\ell & \cdots & w_{\ell^2-\ell} \\
 w_1 & w_{\ell+1} & \cdots & w_{\ell^2-\ell+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{\ell-1} & w_{2\ell-1} & \cdots & w_{\ell^2-1}
\end{bmatrix}$$

1. V uses homomorphism to compute $\text{Com}(L \cdot T)$.
2. P sends a commitment to an evaluation of $\tilde{m}(r)$
3. P uses a dot-product argument to convince V that $\text{Com}(\tilde{m}(r))$ is consistent with R and $\text{Com}(L \cdot T)$.
A polynomial commitment for \tilde{m} (cont’d)

$$\tilde{m}(r) \triangleq L \cdot T \cdot R^T$$

$$T \triangleq \begin{bmatrix}
 w_0 & w_\ell & \cdots & w_{\ell^2 - \ell} \\
 w_1 & w_{\ell+1} & \cdots & w_{\ell^2 - \ell + 1} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{\ell-1} & w_{2 \cdot \ell - 1} & \cdots & w_{\ell^2 - 1}
\end{bmatrix}$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])
A polynomial commitment for \(\tilde{m} \) (cont’d)

\[
\tilde{m}(r) \triangleq L \cdot T \cdot R^T
\]

\[
T \triangleq \begin{bmatrix}
w_0 & w_\ell & \cdots & w_{\ell^2 - \ell} \\
w_1 & w_{\ell + 1} & \cdots & w_{\ell^2 - \ell + 1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{\ell - 1} & w_{2 \cdot \ell - 1} & \cdots & w_{\ell^2 - 1}
\end{bmatrix}
\]

Dot-product argument has \(2 \log |R| \) communication (adapted from Bulletproofs [BBBPWM18])

\(\mathcal{P} \) sends one commitment per row: \(S_\mathcal{P} \in O\left(\sqrt{|w|}\right) \)
A polynomial commitment for \tilde{m} (cont’d)

$$\tilde{m}(r) \triangleq L \cdot T \cdot R^T$$

$$T \triangleq \begin{bmatrix}
 w_0 & w_\ell & \cdots & w_{\ell^2-\ell} \\
 w_1 & w_{\ell+1} & \cdots & w_{\ell^2-\ell+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{\ell-1} & w_{2 \cdot \ell-1} & \cdots & w_{\ell^2-1}
\end{bmatrix}$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: $S_P \in O\left(\sqrt{|w|}\right)$

V’s time is $O(|R| + |L|)$: $T_V \in O\left(\sqrt{|w|}\right)$
A polynomial commitment for \tilde{m} (cont’d)

$$\tilde{m}(r) \triangleq L \cdot T \cdot R^T$$

$$T \triangleq \begin{bmatrix}
 w_0 & w_\ell & \cdots & w_{\ell^2-\ell} \\
 w_1 & w_{\ell+1} & \cdots & w_{\ell^2-\ell+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^2-1}
\end{bmatrix}$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])

\mathcal{P} sends one commitment per row: $S_\mathcal{P} \in O\left(\sqrt{|w|}\right)$

\mathcal{V}’s time is $O(|R| + |L|)$: $T_\mathcal{V} \in O\left(\sqrt{|w|}\right)$

Can choose $S_\mathcal{P} \cdot T_\mathcal{V} \in O(|w|)$ s.t. $T_\mathcal{V} \in \Omega\left(\sqrt{|w|}\right)$
Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)
Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments reduces proof size and time
Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments
→ reduces proof size and \mathcal{V} time

Redistribution layer
→ lets Hyrax extract parallelism from serial computations
Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments → reduces proof size and \(\nu \) time

Redistribution layer

→ lets Hyrax extract parallelism from serial computations

Gir++ IP: Giraffe [WJBsTWW17] plus a tweak [CFS17] → reduces proof size
Roadmap

1. General-purpose ZK proof systems
2. Hyrax at a high level
3. Evaluation
Evaluation overview

Baselines:

- BCCGP-sqrt [BCCGP16]—re-implemented
- Bulletproofs [BBBPWM18]—re-implemented
- ZKB++ [CDGORRSZ17]—ran authors’ implementation
- Ligero [AHIV17]—ran authors’ implementation
- libSTARK [BBHR18]—ran authors’ implementation

- Hyrax-$1/3$—T has ℓ rows, ℓ^2 columns
- Hyrax-naive—no refinements
Evaluation overview

Baselines:

- BCCGP-sqrt [BCCGP16]—re-implemented
- Bulletproofs [BBBPWM18]—re-implemented
- ZKB++ [CDGORRSZ17]—ran authors’ implementation
- Ligero [AHIV17]—ran authors’ implementation
- libSTARK [BBHR18]—ran authors’ implementation

- Hyrax-$1/3$—T has ℓ rows, ℓ^2 columns
- Hyrax-naive—no refinements

Parameters: ≈ 90-bit security (M191 elliptic curve)
Evaluation overview

Baselines:

- BCCGP-sqrt \cite{BCCGP16}—re-implemented
- Bulletproofs \cite{BBBPWM18}—re-implemented
- ZKB++ \cite{CDGORRSZ17}—ran authors’ implementation
- Ligero \cite{AHIV17}—ran authors’ implementation
- libSTARK \cite{BBHR18}—ran authors’ implementation

- Hyrax-\(1/3\)—\(T\) has \(\ell\) rows, \(\ell^2\) columns
- Hyrax-naive—no refinements

Parameters: \(\approx 90\)-bit security (M191 elliptic curve)

Benchmark: SHA-256 Merkle tree, varying number of leaves
Proof size

<table>
<thead>
<tr>
<th>$\log_2 M$, number of leaves in Merkle tree</th>
<th>proof size, kiB (lower is better)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10^0</td>
</tr>
<tr>
<td>10</td>
<td>10^1</td>
</tr>
<tr>
<td>100</td>
<td>10^2</td>
</tr>
<tr>
<td>1000</td>
<td>10^3</td>
</tr>
<tr>
<td>10000</td>
<td>10^4</td>
</tr>
<tr>
<td>100000</td>
<td>10^5</td>
</tr>
</tbody>
</table>

Hyrax-1/2, Hyrax-1/3, Hyrax-naive, BCCGP-sqrt, Bulletproofs, ZKB++, Ligero, libSTARK

Proof size vs $\log_2 M$, number of leaves in Merkle tree
P time

![Graph showing the relationship between $\log_2 M$, number of leaves in Merkle tree, and prover time]

- $\log_2 M$, number of leaves in Merkle tree
- Prover time, seconds
- Proof size, kiB

Comparison of prover time and proof size across different Merkle tree sizes and proof systems:

- Hyrax-$1/2$
- Hyrax-naive
- BCCGP-sqrt
- Bulletproofs
- ZKB++
- Ligero
- libSTARK
Recap

We design, implement, and evaluate *Hyrax*, a zkSNARK for “data-parallel” AC satisfiability. Hyrax’s proofs are small: to get smaller, you have to pay more computation. Hyrax is fast: to get faster, you have to accept bigger proofs. Hyrax is one useful point in a large tradeoff space. There is still plenty of room for improvement!

https://hyrax.crypto.fyi
https://github.com/hyrax
Recap

We design, implement, and evaluate *Hyrax*, a zkSNARK for “data-parallel” AC satisfiability

✓ Hyrax’s proofs are **small**: to get smaller, you have to pay more computation.

https://hyrax.crypto.fyi
https://github.com/hyrax:K
Recap

We design, implement, and evaluate *Hyrax*, a zkSNARK for “data-parallel” AC satisfiability

✔ Hyrax’s proofs are **small**: to get smaller, you have to pay more computation.

✔ Hyrax is **fast**: to get faster, you have to accept bigger proofs.

https://hyrax.crypto.fyi
https://github.com/hyrax
Recap

We design, implement, and evaluate Hyrax, a zkSNARK for “data-parallel” AC satisfiability

✔ Hyrax’s proofs are small:
 to get smaller, you have to pay more computation.

✔ Hyrax is fast:
 to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!
We design, implement, and evaluate Hyrax, a zkSNARK for “data-parallel” AC satisfiability.

- Hyrax’s proofs are small: to get smaller, you have to pay more computation.
- Hyrax is fast: to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space. There is still plenty of room for improvement!

https://hyrax.crypto.fyi
https://github.com/hyraxZK